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LETTER TO THE EDITOR 

A disentanglement relation for SU(3) coherent states 

K Raghunathan, M Seetharaman and S S Vasan 
Department of Theoretical Physics, University of Madras, Guindy Campus, Madras- 
600 025, India 

Received 20 September 1989 

Abstract. A Baker-Campbell-Hausdorff-type disentanglement relation relevant to SU(3)  
coherent states is presented. 

We present a disentanglement relation, also known as the Baker-Campbell-Hausdorff 
formula, for the SU(3) group. Similar results already available in the literature for 
the SU(2) group (Gilmore 1974), Arrechi er a1 (1972) have been found (Chaturvedi 
et a1 1987) to be very useful in the context of coherent states, calculation of Berry’s 
phase, etc. We believe that our results for SU(3) will also be useful in such contexts. 

Our aim is to establish a disentanglement relation having the form 

M = zTE~I  + z,*E32+ zTEZI - zi El, - ~ 2 ~ 5 2 3  - z ~ E I ~ .  (2) 
In (2) the E, ( i  Zj) are the set of three creation and three annihilation operators for 
SU(3) and h ,  and h2 are diagonal operators given by h ,  = E l l -  E,, and h 2 =  
Ell + E2,+ 2E3,. The E, satisfy the commutation relations 

LE,,, E k l l  = Er16,k - EjkS#I*  ( 3 )  
The z, in (1) are complex variables in terms of which we must find a, CU, p, p, y, 7, S 
and E.  The relation (1) is solely a consequence of the Lie algebra of the group and 
therefore the solution for a, E . .  . is representation independent. Hence we can use 
any faithful representation to obtain them. We make use of a fundamental 3 x 3 matrix 
representation of SU(3) in which E,, are given by 3 x 3 matrices, namely, 

(Et,)kl = Szk6jI. (4) 
Let us consider the LHS of (1) in this representation. It is easy to see that M satisfies 
the minimal equation 

M 3 =  - R 2 M  + cll ( S a )  

R 2 =  Iz,12+l~2(2+1z312 and c = ZTZ2Z3 - z1.;z;. ( 5 6 )  

M k  = u k M 2  + VkM + wkn 

where 

In view of this, we can write for any positive integer k, 

( 6 )  
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where U,, vk and wk are polynomials in R 2  and c. Explicit forms of U, V and W 
can be obtained by noting that they satisfy the coupled recurrence relations 

u k + l  = vk vk,l=-R2Uk+ wk w k + ~  = cuk (7) 

with Uo= 0, V,= 0 and WO= 1 .  The result (7) follows from the fact that 

Mk'+I= Uk+,M2+ Vk+lM+ wk+,n= L'kM3+ VkM2+ WkM 

= V k M 2 f ( - R 2 U k +  wk)M+CukT]. ( 8 )  

V k / k !  and Z W k / k ! .  Let us define, Since e M  = E k  M k / k ! ,  we need to find X U k / k ! ,  
for this purpose, 

It follows from (7) that the uk satisfy the recurrence relation 

Uk+l=-R2Uk-l+CUk-2 (10) 

with U, = U ,  = 0 and U, = 1 .  Hence, multiplying (10) by A k f l  and summing over k, 
we find after some rearrangement that 

F ( A )  can be now evaluated from this result using the Laplace transform technique. 
Let f(s) be the Laplace transform of F ( h ) .  We have 

f(s) = Y F ( A )  = E  U k / s k + l  
k 

1 
s 3 +  sR2 - c '  

= ( l / s )S (  11s)  = 

Now, 

1 
s'+ sR2 - c F ( A )  = Y - I j - ( s )  = 2-' 

in which -sI, -s2 and - s3  are the roots of the cubic 

s, = -ia cos 9 +  

where a = (4/3)"2R and cos 3 6  = (4 ic /a3) .  From 
evaluate the quantities 

( 2T(:-1)) 

s3 + sR2 - c = 0 and are given by 

a knowledge of F(A) one can 

G ( A ) = c A k V , / k !  and H ( A )  =c h k W k / k !  

needed to evaluate eAM. Since G ( A )  = dF/dA, we get at once 
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Similarly, 

In obtaining (15) we have used c = -sIs2s3. We can now write the LHS of (1) (setting 
A = l )  as 

e M  = [-(lzl12+ Iz,12)F+ HIEII - ( z , z f F +  z3G)El2+ ( z3z ,F-  z , G ) E , ,  

- ( zZZTF - Z; G)E21 + [-( Iz2I2 + Iz,12)F + HIE22 

- ( Z , Z T F + Z ~ G ) E ~ ~ + ( Z T Z T F + Z T G ) E ~ ~  

- ( zTz,F - zTG)E32 + [ -( /z,I2+ I z*~*)F + H I & .  (16) 

Evaluating the R H S  of (1) is simple because in the representation chosen the expotentials 
involving the diagonal operators h ,  and h2 can be written as 

exp(h, In 6 ) = 6 E l , + ( 1 / 6 ) E 2 2 + E 3 3  

exp(h2 In E )  = E E , ~  + E E ~ ~  + (1/e2)EJ3 (17) 

and for the rest of the exponentials we can use McLaurin’s expansion and use the fact 
that E:, = 0 in the chosen representation so that 

exp( ~5, )  = 1 + TEij ( i  # j ) .  

Thus, the R H S  of (1) can now be multiplied out and it becomes 

eM = E ~ E , , + ~ E s E , ~ + E ~ ( ~ + ~ ~ ) E , , + ~ ~ G E ~ ,  

+ [ YTE6 + ( E /  6)1E22 + [ Y E a ( a  + Pr) + ( P E /  8 11 E23 

+ E S ( 6  + p y ) E , ,  + [ YE6(  ci +pp) + ( P E / ~ ) ] E ~ ~  

+ [ E 6  ( a  + Pr )( + 67 1 + ( P P 4  6 1 + ( 1 / E 7 1  E,, . 

E6=H-( lz l12+lzJ /2)F  

On equating (16) and (19) we get the following set of equations: 

Y E S  = - ( z I zTF+ z,G) 

~ 6 ( a  + P r )  = ( z ~ z Z F -  zIG) 

Y E S  = - ( ~2 z T F - Z ;  G ) 

YYES + ( E /  6 )  = H - ( 1  Z2( *  + 1 z$) F 

E ~ ( ~ + p j i ) = ( ~ $ ~ T ~ + ~ T ~ )  

E 8 ( a  +Pr)(cu +By)  + ( p p E / s ) +  (1/E2) = H - ( I Z 2 l 2 +  Iz212)E 

y~S(a + P ~ ) + ( P E / S )  = - ( z , z ; F +  z ~ G )  

Y E S ( &  +pp)+(p~/S) = - ( z T z ~ F -  zTG) 
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Even though we have nine equations to solve for eight parameters, the ninth equation 
is not independent of the rest and can be shown to follow from the rest of the equations 
due to the fact that det(eM) = 1. The explicit solutions of the algebraic equations 
(20) - (27)  can be found to be the following: 

(29 )  

(30) 

( 3 1 )  

( 3 2 )  

Y = -( 21 zT F + z ,G) /  [ H  - (Izi I’ + Iz3I’)FI 

6’ = [U - (Iz1l2+ J z ~ / * ) F ] ’ / E ’  

p = [z lzT(  R’F’+ GI-  H F )  + z2( cF’ - H G ) ] / E ’  

= H ’ + / ~ ~ / ~ ( R * F ’ +  G * -  H F )  - R ~ H F - C F G  

(Y = (Z,Z,[FH*- H G 2 -  HF2(2R‘-  1~21’) + F G 2 ( R 2 -  1 ~ 3 1 ~ )  + R2F3(R’ -  I z ’ ~ ’ ) ]  
- zl[ GH’+ F G H (  R‘+ 1 ~ 2 1 ’ )  - cHF’ +2cFG’ 

+ cF’( R’ - I Z ’ / ‘ ) ] } / [  H - ( lzll ’  + /z,I’)F]E’. ( 3 3 )  

ti, @ and 7 are obtained by replacing zi by -z? in the above. We can verify (28 )  using 
the above solutions and the fact that 

det eM = c’F’+cG’+ H’+cR2F’G+ R 4 F ’ H + R 2 G 2 H  - 2 R 2 H 2 F - 3 c F G H  = 1. 

The applications of our results, mentioned already, such as Berry’s phase for S U ( 3 )  
coherent states, treatment of three level atoms, etc, are under investigation. 
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